Crystal structure and tautomerism of Pigment Yellow 138 determined by X-ray powder diffraction and solid-state NMR

Michele R. Chierotti, Roberto Gobetto, Martin U. Schmidt, Jacco van de Streek, Silke D. Gumbert, Meike Körbitzer, Edith Alig, Xiaozhou Li

1Department of Chemistry and NIS Centre, University of Torino, V. P. Giuria 7, 10125, Torino Italy. 2Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany. 3Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark

Pigment Yellow 138 (P.Y. 138) is a commercial greenish-yellow pigment based on quinophthalone. It exhibits three possible tautomeric forms, which denoted as CH-form (1a), OH-form (1b) and NH-form (1c), Figure 1.

Due to the lack of good crystals for the single crystal X-ray diffraction analysis, the crystal structure of P.Y. 138 was determined by combining X-ray powder diffraction data (using real-space methods with subsequent Rietveld refinements) solid-state NMR and computational data. The tautomeric state was investigated by solid-state 1D and 2D multinuclear NMR experiments.

In the crystals, the compound exhibits the NH-tautomer with a hydrogen atom situated at the nitrogen of the quinoline moiety. Direct evidence of the presence of the NH-tautomer is provided by 1H-15N HMQC solid-state NMR at very fast MAS (70 kHz). Solid-state dispersion-corrected density functional theory calculations with BLYP-D3 confirm the correctness of the crystal structure and support the NH-tautomer. The NH hydrogen atom forms an intramolecular resonance-assisted N-H•••O hydrogen bond to the neighbouring indandione moiety.

Figure 1. Possible tautomeric forms of P.Y. 138.